Морской лед. Свойства и классификация морского льда. Морские льды. Общие сведения Виды льда в море

Около −1,8 °C.

Оценка количества (густоты) морского льда даётся в баллах - от 0 (чистая вода) до 10 (сплошной лёд).

Свойства

Важнейшие свойства морского льда - пористость и солёность, определяющие его плотность (от 0,85 до 0,94 г/см³). Из-за малой плотности льда льдины возвышаются над поверхностью воды на 1 / 7 - 1 / 10 их толщины. Таяние морского льда начинается при температуре выше −2,3 °C. По сравнению с пресноводным он труднее поддаётся раздроблению на части и более эластичен .

Солёность

Плотность

Морской лёд является сложным физическим телом, состоящим из кристаллов пресного льда, рассола, пузырьков воздуха и различных примесей. Соотношение составляющих зависит от условий льдообразования и последующих ледовых процессов и влияет на среднюю плотность льда. Так, наличие пузырьков воздуха (пористость ) значительно уменьшает плотность льда. Солёность льда оказывает на плотность меньшее воздействие, чем пористость. При солёности льда 2 промилле и нулевой пористости плотность льда составляет 922 килограмма на кубический метр , а при пористости 6 процентов понижается до 867. В то же время при нулевой пористости увеличение солёности с 2 до 6 промилле приводит к увеличению плотности льда только с 922 до 928 килограммов на кубический метр .

Нилас (на переднем плане) в Арктике

Теплофизические свойства

Оттенки цвета морского льда в больших массивах варьируют от белого до коричневого.

Белый лёд образуется из снега и имеет много пузырьков воздуха или ячеек с рассолом.

Молодой морской лёд зернистой структуры со значительным количеством воздуха и рассола часто имеет зелёный цвет.

Многолетние торосистые льды, из которых выдавлены примеси, и молодые льды, которые замерзали в спокойных условиях, часто имеют голубой или синий цвет. Голубым также бывает глетчерный лёд и айсберги . В голубом льду чётко видна игольчатая структура кристаллов .

Коричневый или желтоватый лёд имеет речной или прибрежный генезис, в нём имеются примеси глины или гуминовых кислот .

Начальные виды льда (ледяное сало, шуга) имеют тёмно-серый цвет, иногда со стальным оттенком. С увеличением толщины льда его цвет становится светлее, постепенно переходя в белый. При таянии тонкие льдинки снова становятся серыми.

В случае, если лёд содержит большое количество минеральных или органических примесей (планктон , эоловые взвеси, бактерии), его цвет может меняться на красный, розовый, жёлтый , вплоть до чёрного .

В связи со свойством льда задерживать длинноволновую радиацию, он способен создавать парниковый эффект, что приводит к нагреванию находящейся под ним воды.

Механические свойства

Под механическими свойствами льда понимают его способность противостоять деформациям .

Типичные виды деформации льда: растяжение, сжатие , сдвиг , изгиб . Выделяют три стадии деформации льда: упругая , упруго-пластическая , стадия разрушения. Учёт механических свойств льда важен при определении оптимального курса ледоколов , а также при размещении на льдинах грузов, полярных станций , при расчёте прочности корпуса судна .

Условия образования

При образовании морского льда между целиком пресными кристаллами льда оказываются мелкие капли солёной воды, которые постепенно стекают вниз. Температура замерзания и температура наибольшей плотности морской воды зависит от её солёности. Морская вода, солёность которой ниже 24,695 промилле (так называемая солоноватая вода), при охлаждении сначала достигает наибольшей плотности , как и пресная вода , а при дальнейшем охлаждении и отсутствии перемешивания быстро достигает температуры замерзания . Если солёность воды выше 24,695 промилле (солёная вода), она охлаждается до температуры замерзания при постоянном увеличении плотности с непрерывным перемешиванием (обменом между верхними холодными и нижними более тёплыми слоями воды), что не создаёт условий для быстрого выхолаживания и замерзания воды, то есть при одинаковых погодных условиях солёная океаническая вода замерзает позже солоноватой.

Классификации

Морской лёд по своему местоположению и подвижности разделяется на три типа:

  • плавучие (дрейфующие) льды,

Прогноз изменения толщины ледового покрова к 2050 году

По стадиям развития льда выделяют несколько так называемых начальных видов льда (в порядке времени образования):

  • внутриводный (в том числе донный или якорный), образующийся на некоторой глубине и находящихся в воде предметах в условиях турбулентного перемешивания воды.

Дальнейшие по времени образования виды льда - ниласовые льды :

  • нилас, образующийся при спокойной поверхности моря из сала и снежуры (тёмный нилас до 5 см толщиной, светлый нилас до 10 см толщиной) - тонкая эластичная корка льда, легко прогибающаяся на воде или зыби и образующая при сжатии зубчатые наслоения;
  • склянки, образующиеся в распреснённой воде при спокойном море (в основном, в заливах , около устьев рек) - хрупкая блестящая корка льда, которая легко ломается под действием волны и ветра;
  • блинчатый лёд, образующийся при слабом волнении из ледяного сала, снежуры или шуги или вследствие разлома в результате волнения склянки, ниласа или так называемого молодого льда. Представляет собой пластины льда округлой формы от 30 см до 3 м в диаметре и толщиной 10-15 см с приподнятыми краями из-за обтирания и ударов льдин .

Дальнейшей стадией развития льдообразования являются молодые льды , которые подразделяются на серый (толщина 10-15 см) и серо-белый (толщиной 15-30 см) лёд.

Морской лёд, развивающийся из молодого льда и имеющий возраст не более одного зимнего периода, называется однолетним льдом . Этот однолетний лёд может быть:

  • тонким однолетним льдом - белый лёд толщиной 30-70 см,
  • средней толщины - 70-120 см,
  • толстым однолетним льдом - толщиной более 120 см.

Если морской лёд подвергался таянию хотя бы в течение одного года, он относится к старым льдам . Старые льды подразделяются на:

  • остаточный однолетний - не растаявший летом лёд, находящийся вновь в стадии замерзания,
  • двухлетний - просуществовавший более одного года (толщина достигает 2 м),
  • многолетний - старый лёд толщиной 3 м и более, переживший таяние не менее двух лет. Поверхность такого льда покрыта многочисленными неровностями, буграми, образовавшимися в результате неоднократного таяния. Нижняя поверхность многолетних льдов также отличается большой неровностью и разнообразием формы.

Исследование морского льда на Северном полюсе

Толщина многолетних льдов в Северном Ледовитом океане в некоторых районах достигает 4 м.

В антарктических водах в основном находится однолетний лёд толщиной до 1,5 м, который исчезает в летнее время.

Особенности судовождения в ледовых условиях зависят от района плавания и присущего ему ледового режима, который в свою очередь зависит от многих факторов: географического положения района, характера течений, солености и температуры воды, ветров, приливо-отливных явлений, наличия рек, впадающих в моря в данном районе.

Сведения о ледовых режимах даются в гидрометеорологических очерках ло­ции, состоящих из характеристик метеорологической, гидрологической и ледового режима.

Иллюстративным материалом к таким очеркам служат атласы физико­географических данных, карты льдов и гидрометеорологические карты, специаль­ные приложения к лоциям.

Располагая указанными пособиями, а также данными ледового патруля, ме­теорологических станций, авиаразведок и прочими источниками, судоводитель может получить в большинстве случаев достаточно точное представление о рас­пределении льдов, о навигационной характеристике предстоящего пути. Данные о распределении льдов с указанием их кромок и разновидностей рекомендуется наносить на бланковые карты или на кальки, снятые с навигационных карт.

Асимметричный ледокол

Во время перехода судна большую роль играет получение дополнительных сведений и коррективов от радиостанций, несущих специальную службу, а также от ледоколов и отдельных судов, находящихся в том же районе. Кроме того, необ­ходимо иметь сведения о синоптической обстановке на время перехода и ледовые прогнозы.

Для правильной оценки получаемых сведений о льдах необходимо знать их классификацию, а по возможности и навигационную характеристику, определяю­щую степень проходимости льдов.

Плавание во льдах обусловливает повышенные требования к экипажам су­дов, и к судоводителям, и к матросам. Управление судном во льдах предъявляет ряд специфических требований к матросам, стоящим на руле. Помимо выполнения команд вахтенного помощника, рулевой матрос должен уметь самостоятельно ори­ентироваться при движении среди льда.

Классификация льдов

Морской плавучий лед не связан с берегом или дном и находится в постоян­ном движении (дрейфует) под воздействием ветра и течения. Плавучий лед являет­ся преобладающей категорией льда в морях и океанах. Образуются плавучие льды в море самостоятельно или в результате разлома припая (берегового льда).

Различаются плавучие льды по форме, размерам, возрасту, сплоченности и другим признакам.

По возрасту различают:

  • начальные образования льда (ледяные иглы, ледяное сало, снежуру, шу­гу, блинчатый лед, склянку, темный нилас);
  • молодой лед (светлый нилас, серый лед) толщиной 5 — 15 см;
  • зимний лед (серо-белый, белый лед) толщиной 15 — 200 см.

По форме лед подразделяют на:

  • неподвижный (ледяной заберег, припай, стояк, стамуха);
  • дрейфующий, или плавучий (обширные большие и малые ледяные по­ля, крупнобитый и мелкобитый лед, куски льда, ледяная каша).

По строению льда и состоянию его поверхности различают:

  • ровный лед;
  • наслоенный;
  • торосистый;
  • бесснежный;
  • заснеженный лед и сморозь.

По размерам плавучие льды делятся на следующие виды:

  • большие ледяные поля, состоящие из льдин размером свыше 10 км;
  • ледяные поля, состоящие из льдин размером в поперечнике 2 — 10 км;
  • малые ледяные поля — 0,5 — 2,0 км в поперечнике;
  • обломки полей — 100 — 500 м в поперечнике;
  • крупнобитый лед — льдины размером в поперечнике 20 — 100 м;
  • мелкобитый лед — льдины размером 2 — 20 м в поперечнике;
  • тертый лед — битый лед менее 2 м в поперечнике;
  • несяк — большой торос или группа торосов, смерзшихся вместе и представляю­щих собой отдельную льдину, высотой до 5 м;
  • крупный несяк — сильно торосистая льдина среднего размера, возвышающаяся над водой на 5 м;
  • малый несяк — небольшой кусочек льда зеленоватого оттенка, едва возвышаю­щийся над водой;
  • ледяная каша — скопление льда, состоящее из обломков не более 2 м в попереч­нике;
  • айсберг — монолитный отколовшийся от ледника кусок льда, выступающий над уровнем моря более чем на 5 м и находящийся на плаву (или на мели); по форме айсберги подразделяются на столообразные, куполообразные, наклонные, с ост­роконечными вершинами, окатанные или пирамидальные;
  • ропак — отдельная льдина, стоящая вертикально или наклонно и окруженная сравнительно гладким льдом.

Терминология

Границы среднего распространения льда — среднее положение кромки льда для заданного месяца или сезона, выведенное из многолетних наблюдений.

Редкий лед — различного вида плавучий лед, преимущественно битый, равномерно распределенный и занимающий до 30% ви­димой поверхности моря (сплоченность 1 — 3 балла).

Разреженный лед — различного вида битый дрейфующий лед, занимающий более половины видимой поверхности (сплоченность 4 — 6 баллов). Разрежение льда вызвано двумя причинами:

  • приливо-отливными течениями, периодически сжимающими и разрежаю­щими льды, и
  • таянием льдов.

Сплоченный лед — скопление плавучих льдов, покрывающих около 80% види­мой поверхности (сплоченность 7 — 9 баллов).

Сплошной лед — сплошная масса, покрывающая все видимое пространство моря (сплоченность 10 баллов).


Атомоход Россия, движущийся во льдах

Лед может быть легким, тяжелым и деформированным.

Легкий лед толщиной до 60 см свободно преодолим ледоколами, а при бла­гоприятных условиях — судами с усиленным подкреплением корпуса.

Тяжелый лед толщиной более 60 см с торосами возрастом больше одного года с трудом преодолевают только мощные ледоколы.

Деформированный лед , наслоенный с глубиной наслоений до 20 м. Это лед торосистый и может быть непроходим даже для самых мощных ледоколов.

Торошение — вид формирования ледовых препятствий, когда разломы, столк­новения и сжатия льда образуют торосы.

Торосы — нагромождение льдин, обычно смерзшихся; могут располагаться отдельными образованиями и группами, чаще грядами.

По месту нахождения торосы могут быть береговыми и морскими. Они обра­зуются от взлома, раздробления и надвигания льдов.

В шуге суда двигаются легко, а плотный эластичный покров снежуры за­трудняет движение, так как он не колется форштевнем, а только сжимается; тонкий лед или корку суда проходят с некоторыми затруднениями.

Сжатие льда — уплотнение под влиянием вет­ров и течений. Сжатие льда наблюдается и во время смены приливоотливных течений независимо от вет­ров. Ветры могут только усилить или ослабить, за­держать или ускорить приливо-отливные сжатия. Это явление составляет самое большое затруднение для плавания.

Сплоченность плавающего льда определяется по десятибалльной шкале:

Шкала сплоченности дрейфующего льда
Баллы Размер площади Характеристика
0 Льда нет Чистая вода
1 Площадь, занятая дрейфующими льдами, в 9 раз меньше площади проме-жутков воды между ними Редкий лед
2 Площадь, занятая дрейфующими льдами, в 4 раза меньше площади проме-жутков воды между ними Редкий лед
3 Площадь, занятая дрейфующими льдами, в 2 — 2,5 раза меньше площади промежутков воды между ними Редкий лед
4 Площадь, занятая дрейфующими льдами, в 1,5 раза меньше площади про-межутков воды между ними Разреженный лед
5 Площадь, занятая дрейфующими льдами, равна площади промежутков воды между ними Разреженный лед
6 Площадь, занятая дрейфующими льдами, в 1,5 раза больше площади про-межутков воды между ними Разреженный лед
7 Площадь, занятая дрейфующими льдами, в 2 — 2,5 раза больше площади промежутков воды между ними Сплоченный лед
8 Площадь, занятая дрейфующими льдами, в 4 раза больше площади проме-жутков воды между ними Сплоченный лед
9 Площадь, занятая дрейфующими льдами, в 9 раз больше площади проме-жутков воды между ними Очень сплочен¬ный лед
10 Льдины полностью покрывают видимую поверхность моря Сплошной лед

Признаки приближения ко льдам

Для обеспечения безопасности плавания очень важно заблаговременно об­наружить приближение льда, особенно при плохой видимости или тумане, чтобы своевременно уменьшить ход, усилить наблюдение, проверить местоположение судна. Признаками приближения ко льдам являются:

  • «ледовый отблеск» или «ледовое небо» — характерное белесоватое отсвечи­вание на облаках над отдельными скоплениями льдов. Отблеск бывает осо­бенно ясен при хорошей прозрачности воздуха, когда льды покрыты снегом;
  • «водяное небо» — темные пятна на низких облаках над участками чистой во­ды, расположенными среди льдов; темные пятна на облаках иногда являются отражением грязного льда. При безоблачном небе чистую воду или льды иногда можно обнаружить благодаря рефракции;
  • понижение температуры забортной воды, иногда резкое, указывающее на почти предельное приближение ко льдам;
  • понижение температуры воздуха, наблюдающееся при подходе к обширным полям льда, особенно при ветре со стороны льда.
  • изменение характера волны; короткая волна, иногда толчея при подходе ко льдам с наветренной стороны и ослабление при подходе с подветра;
  • появление мелкобитых льдинок и «ледяной каши»;
  • появление тумана над горизонтом;
  • шум, треск и шорох, слышимые при приближении к торосистым льдам;
  • эхо при свистках или выстрелах, отраженное от близких, высоких тороси­стых масс льда и от крупных айсбергов;
  • появление моржей, тюленей и стай птиц.

Ледовые карты

Общее представление о распределении льда в районе плавания дает ледовая карта. Информацию о состоянии льда получают с помощью искусственных спут­ников Земли, самолетов и вертолетов ледовой разведки, судовых наблюдений, бе­реговых пунктов наблюдений, автоматических дрейфующих ледовых станций. С использованием всей этой информации береговыми службами подготавливаются ледовые карты, которые передаются на суда.

Решение о движении судна во льдах принимается на основе анализа ледовых карт, на которых в виде символов отображаются характеристики ледового покрова. Главным условным знаком в этой системе символов является овал, в котором ука­зываются основные навигационные характеристики льда (рис. 1), где буквой С обозначена общая сплоченность льда в баллах.


Рис. 1 Овальный символ морского льда
  • Са, Сb, Сс — сплоченность льда самого толстого (Са), менее толстого (Сb) и третьего по толщине (Сс), баллы;
  • Sa, Sb, Sc — возраст льда, сплоченность которого, соответственно, равна Са, Сb, Сс;
  • Fa, Fb, Fc — преобладающие формы льда, возраст которого, соответственно, равен Sa, Sb, Sc.

Для возраста льда используются следующие основные цифровые символы:

  • 1 — начальные виды льда;
  • 2 — нилас, толщиной до 10 см;
  • 3 — молодой лед, толщиной 10 – 30 см;
  • 4 — молодой лед, толщиной 10 – 15 см;
  • 5 — молодой лед, толщиной 15 – 30 см;
  • 6 — однолетний лед, толщиной 30 -250 см;
  • 7 — старый лед, толщиной более 250 см;
  • Δ — материковый лед;
  • X — возраст неизвестен.

Для обозначения формы ледяных образований применяются следующие цифровые символы:

  • 1 — тертый лед или ледяная каша;
  • 2 — мелкобитый лед;
  • 3 — крупнобитый лед;
  • 4 — обломки ледяных полей;
  • 5 — большие ледяные поля;
  • 6 — обширные ледяные поля;
  • 7 — гигантские ледяные поля;
  • 8 — припай;
  • 9 — айсберги;
  • X — форма неизвестна.

Пример применения овального символа морского льда, приведенного на рис. 1, означает, что в данном районе находится лед общей сплоченностью 6 баллов. Из них 2 балла — обломки полей старого льда, 1 балл — крупнобитый молодой лед, 3 балла — нилас, форма которого не определена.

Наряду с главным символом — овалом, на ледовой карте применяются и дру­гие символы, дополняющие и конкретизирующие общую картину распределения льда:

Дополнительные ледовые символы
торосистость льда, в баллах;
разрушенность льда, в баллах;
заснеженность льда (С — площадь покрытого снегом льда в десятых долях от общей площади; S — заснеженность в баллах ← направление застругов);
сжатие льда в баллах;
рекомендованные маршруты движения.

На ледовой карте каждая зона льда с примерно одинаковыми характеристиками выделяется по ее границе изолиниями (рис. 2). Для наглядности различные зоны могут быть заштрихованы.

Рис. 2 Ледовая карта
Условные обозначения
Раскраска обзорных карт по возрасту (стадиям развития) льда: применяется в период
образования, становления и частичного разрушения льда «зимняя раскраска по возрасту»
Возрастные характеристики льда:
условная раскраска по цвету: применение графических символов:
* *
*
начальные виды льда
нилас, склянка (толщина до 10 см)
серый лед (10-15 см)
серо-белый лед (15-30 см)
тонкий однолетний (белый) лед (30-70 см)
однолетний лед средней толщины
(70-120 см)
толстый однолетний лед (более 120 см)
остаточный однолетний лед
двухлетний лед (до 2,5 м и более)
многолетний лед (около 3 м и более)
Формы плавучего льда: Условные обозначения, возраст:
мелкобитый лед нилас
крупнобитый лед серый
обломки ледяных полей серо-белый
большие поля тонкий
обширные ледяные поля средний
гигантские ледяные поля толстый
ледяная каша старый
блинчатый лед припай
Возрастные характеристики неподвижного льда (припая) в см: Обобщенные характеристики льда:
ниласовые льды (5-10 см) возрастной состав дрейфующих льдов
молодые льды (10-30 см) торосистость льда (в баллах)
тонкий однолетний лед (30-70 см) показатель сжатия (в баллах)
однолетний лед средней толщины (70-120 см) наслоеность льда
толстый однолетний лед (>120 см) разрушеность льда
Раскраска обзорных карт по сплоченности:
применяется в период разрушения и таяния льда
«летняя раскраска по сплоченности»
Сплоченность льда: Формы плавучего льда:
сплошной, смерзшийся спл. и очень спл. дрейф. лед (9-10/10) мелкобитый лед
сплоченный лед (7-8/10) крупнобитый лед
разряженный лед (4-6/10) обломки ледяных полей
редкий лед (1-3/10) большие поля
отдельные льдины (<1/10) обширные ледяные поля
чистая вода гигантские ледяные поля
айсберговые воды ледяная каша
блинчатый лед
Условные обозначения
чисто
1-3
4-6
7-8
9-10
10
припай

Современные средства доставки и отображения гидрометеорологической информации на суда

В 2006 году на базе Арктического и Антарктического института (ААНИИ) создана система контроля и прогнозирования состояния атмосферы и гидросферы для обеспечения морской деятельности в арктических и замерзающих морях РФ.

Основными источниками исходной информации являются:

  • искусственные спутники Земли;
  • наземная сеть береговых и островных полярных станций;
  • автоматические дрейфующие буи;
  • отечественные и зарубежные центры гидрометеорологической информации.

Решаемые задачи:

  • контроль ледяного покрова;
  • долгосрочное планирование операций;
  • выбор оптимального маршрута плавания.

В результате разработан «ледовый терминал», позволяющий отображать на мо­ниторе судового компьютера в виде непрозрачных и прозрачных слоев совмещен­ные с навигационной картой следующие данные:

  • изображения поверхности, получаемые с ИСЗ;
  • фактические ледовые карты;
  • прогностические ледовые карты;
  • синоптические карты и прогнозы погоды;
  • навигационные рекомендации.

Информация поступает посредством каналов связи, предоставляемых системами Inmarsat, Globalstar, Iridium или Internet. Ниже приведены примеры использования «ледовых терминалов» на судах (рис. 3 – 6).

Рис. 3 Ледовая карта Рис. 4 Ледовый прогноз в Татарском проливе Рис. 5 Рекомендованный маршрут в Татарском проливе Рис. 6 Маршрут судна при следовании во льдах

Предлагается к прочтению:

Морские льды классифицируются:

    по происхождению,

    по формам и размерам,

    по состоянию поверхности льда (ровный, торосистый),

    по возрасту (стадии развития и разрушения),

    по навигационному признаку (проходимость льдов судами),

    по динамическому признаку (неподвижные и плавучие льды).

По происхождению льды делятся на морские, речные и глетчерные.

Морские льды образуются из морской воды, имеет зеленоватый или белесоватый (при наличии пузырьков воздуха или снега) оттенок.

Пресноводные льды выносятся весной и летом из рек, имеет сероватый или коричневатый оттенок из- за вкраплений взвесей.

Глетчерные льды (материкового происхождения) образуются в результате откалывания ледников, спускающихся в море – айсберги, дрейфующие ледяные острова.

По виду и форме льды делятся на:

    ледяные иглы , образующиеся на поверхности или в толще воды,

    ледяное сало – скопление смерзшихся ледяных игл в виде пятен или тонкого слоя серовато свинцового цвета,

    снежура – вязкая кашеобразная масса, образующаяся при обильном снегопаде на охлажденную воду,

    шуга – скопление комков льда, снежуры и донного льда,

    нилас – тонкая эластичная ледяная корка толщиной до 10 см,

    склянка – тонкий прозрачный лед толщиной до 5 см, образующийся при спокойном море из ледяных кристаллов или сала,

    блинчатый лед – лед, обычно круглой формы диаметром от 30см до 3 м и толщиной до 10 см.

По возрасту лед бывает:

    молодой лед толщиной 15-30 см, имеет серый или серо-белый оттенок,

    однолетний лед – лед, просуществовавший не более одной зимы, толщиной от 30 см до 2 м,.

    двухлетний –лед, достигший к концу второй зимы толщины более 2 м,

    многолетний паковый лед – лед, просуществовавший более 2 лет, толщиной более 3 м, голубого цвета.

По навигационному признаку проходимость льда оценивается по 10 бальной шкале сплоченности льда. Сплоченность (густота) льда – это соотношение площади льдин и промежутков воды между ними в данном районе. Практика ледового плавания показала, что самостоятельное плавание морского судна обычного возможно при сплоченности дрейфующего льда 5-6 баллов.

По динамическому признаку льды делят на неподвижные и плавучие.

Неподвижные льды существуют в виде припая у берегов. Толщина многолетнего припая у берегов Гренландии более 3м, а у берегов Антарктиды десятки и даже сотни метров. Толщина однолетнего припая в Северно-Ледовитом океане около 2–3м, ширина до 500км (море Лаптевых).

Плавучие льды образуются или путём намерзания плавающего льда или в результате откалывания от припая.

Для обозначения любого вида плавучего морского льда применяется термин дрейфующий лед.

Размеры дрейфующих льдов различны: при размерах более 500м в поперечнике их называют ледяными полями, при размерах 100…500м - обломками ледяных полей , при размерах 200…100м - крупногабаритным льдом , при размерах меньше 20м - , мелкобитым льдом .

Движение льда происходит под влиянием ветра или течений, под воздействием которых они меняют свою сплоченность. При ветре, дующем на берег сплоченность дрейфующего льда увеличивается, при ветре, дующем с берега, льды разрежаются. С увеличением скорости течений льды разрежаются, с уменьшением скорости льды скапливаются. Скопление (сжатие) льдов приходится на время смены приливо-отливных течений, и продолжаются 1-2 ч, после чего наблюдается разрежение льдов. При подъеме уровня воды льды разрежаются, а при спаде сплачиваются.

Глетчерные льды – айсберги (ледяные горы) образуются в районах Северно-Ледовитого океана и у берегов Антарктиды. Течениями они выносятся в умеренные широты обеих полушариев. Айсберги достигают иногда огромных размеров. В 1854 г. в районе 44°Ю.Ш. 28°З.Д. встречен айсберг длиною 120км и высотой 90м. Только десятая часть айсберга высится над водою.

При охлаждении поверхности моря до температуры точки замерзания в верхнем слое воды (толщиной в несколько сантиметров) появляется большое количество дисков или пластинок чистого льда, называемых шугой. Толщина этих льдинок очень мала, средние размеры примерно 2,5 см*0,5 мм, а форма может быть чрезвычайно разнообразной - от квадратов (или почти квадратов) до гексагональных образований. Оптическая ось такой пластинки всегда перпендикулярна плоскости ее поверхности. Эти элементарные ледяные кристаллы плавают на поверхности воды, образуя так называемое ледяное сало, придающее поверхности моря несколько маслянистый вид. В спокойной воде пластинки плавают в горизонтальном положении и их с -оси направлены вертикально. Ветер и волны заставляют пластинки сталкиваться, переворачиваться и принимать в результате различные положения; постепенно смерзаясь, они образуют постоянный ледяной покров, в котором отдельные кристаллы ориентированы хаотически. На первой стадии формирования молодой лед удивительно гибок; под действием волн, идущих из открытого моря или вызванных движущимся судном, он изгибается, не ломаясь, причем амплитуда колебаний поверхности льда может достигать нескольких сантиметров.

В дальнейшем, если температура не повышается, отдельные пластинки играют роль зародышевых кристаллов. Полностью механизм этого процесса до сих пор не изучен. Как видно по рис. 4, лед состоит из отдельных кристаллов, каждый из которых обладает сугубо индивидуальными свойствами, например степенью пропускания поляризованного света (одинаковой для всего данного кристалла, «но отличной от прочих). В некоторых случаях структурную ячейку льда называют зерном, а не отдельным кристаллом, поскольку ясно, что она обладает сложной субструктурой и состоит из множества параллельных пластинок. Взаимосвязь этой субструктуры упоминавшийся выше первичной шугой достаточно очевидна. Нет сомнения, что некоторая часть зерна образуется из смерзающихся пластинок шуги, которые затем сохраняются как отдельные слои кристалла. Однако, по-видимому, существует и какой-то другой процесс, так как в некоторых случаях кристаллы начинают расти на нижней поверхности достаточно толстого ледяного покрова, причем они также имеют пластинчатое строение. Каким бы ни был механизм образования кристаллов, все они - как в морском льду, так и в пресноводном - состоят из большого числа пластинок, точно параллельных друг другу. Оптическая ось кристалла расположена перпендикулярно этим пластинкам.

Интересные результаты дает изучение распределения кристаллов по ориентации их оптических осей в зависимости от глубины их залегания в толще льда. Ориентация может быть охарактеризована двумя углами - полярным, который представляет собой угол между с-осью и вертикалью, и азимутальным, т.е. углом, измеренным от какого-то произвольного направления, например от линии север - юг. Величины азимутальных углов обычно не подчиняются какому-либо закону; редкие исключения из этого правила могут быть вызваны необычными приливными явлениями. Полярные углы обнаруживают определенную закономерность. Как указывалось выше, ориентация кристаллов у поверхности льда весьма разнообразна, поскольку она зависит от воздействия ветра во время льдообразования. Но по мере углубления в ледяную толщу полярные углы возрастают, и на глубине порядка 20 см оптические оси почти всех кристаллов ориентируются горизонтально. Лабораторное исследование замерзания дистиллированной воды (Перей и Паундер, 1958) при условии, что ее охлаждали только с одного направления, а вода находилась в спокойном состоянии, дало результаты, приведенные в табл. Горизонтальные срезы были взяты с поверхности льда и с глубин 5 и 13 см. Каждый шлиф исследовали на универсальном полярископе. При этом определялось соотношение площадей (в процентах), занятых кристаллами с одинаковой - в пределах 10-градусных интервалов - ориентировкой оптических осей.

Ориентация кристаллов в ледяном покрове (Паундер, 1967)

Аналогичная ситуация наблюдается и в природном морском льду, достигшем определенного «возраста». Исключения бывают в тех случаях, когда в процессе роста ледяного покрова происходят подвижки, вызывающие сдавливание и излом льда. Таким образом, основная масса морского льда, просуществовавшего год или более, состоит из кристаллов, оптические оси которых направлены горизонтально, а по азимуту ориентированы хаотически. Длина (высота по вертикали) таких кристаллов достигает 1 м и более, при диаметре от 1 до 5 см. Причины преобладания во льду кристаллов с горизонтальными оптическими осями помогают понять рис. 4. Поскольку ледяной кристалл имеет одну главную ось симметрии, он может расти преимущественно в двух направлениях. Молекулы льда присоединяются к кристаллической решетке либо в плоскостях (кристалла), перпендикулярных с-оси и называемых базисными плоскостями, либо в направлении с-оси, что в свою очередь приводит к увеличению площади базисных плоскостей. Основываясь на законах термодинамики, можно прийти к выводу, что первый тип роста кристалла должен быть более интенсивным, нежели второй, что и подтверждается экспериментами.

Рис. 5 Преобладание роста кристаллов с наклонными оптическими осями, вызывающее постепенное исчезновение кристалла с вертикальной с -осью. (Паундер, 1967)

Поверхность раздела лед - вода

Исследование нижней поверхности растущего морского льда помогает понять процесс замерзания воды. Нижние 1-2 см ледяной толщи состоят из пластинок чистого (пресного) льда с прослойками рассола между ними. Пластинки, составляющие часть отдельного кристалла, параллельны друг другу и расположены, как правило, вертикально. Это так называемый скелетный (или каркасный) слой. Механическая прочность этого слоя обычно чрезвычайно мала. При дальнейшем замораживании пластинки несколько утолщаются, между ними появляются ледяные перемычки и постепенно образуется сплошной лед, в котором рассол содержится в виде капель или ячеек между пластинками. Понижение температуры льда приводит к уменьшению размеров заполненных рассолом ячеек, которые принимают форму длинных вертикальных цилиндров почти микроскопических размеров в поперечном сечении. Такие ячейки можно обнаружить на рис. 4 в виде рядов черных точек, расположенных вдоль линий между пластинками. Некоторое количество ячеек рассола имеется также у границ между кристаллами, но, основная масса рассола содержится внутри отдельных зерен. На рис. 5 приводятся результаты статистического исследования толщины пластинок в образце годового морского льда. Видно, что пластинки имеют однородную толщину, в среднем в пределах 0,5-0,6 мм. Диаметр гнезд, содержащих рассол, обычно около 0,05 мм.

Рис. 6

Достаточного количества данных о длине таких гнезд до сих пор не имеется; известно лишь, что она колеблется в значительно более широких пределах, чем диаметр. Ориентировочно можно считать, что длина гнезд порядка 3 см.

Таким образом, мы видим, что в большинстве случаев морской лед состоит из макроскопических кристаллов со сложной внутренней структурой - содержит пластинки чистого льда и большое количество ячеек, содержащих рассол. Помимо этого, во льду обычно имеется множество мелких сферических воздушных пузырьков, образующихся из растворенного в воде воздуха, выделяющегося в процессе замерзания. Часть объема морского льда, занятая жидкостью - рассолом, представляет собой чрезвычайно важный параметр, называемый содержанием рассола v (Рис. 6). Его можно рассчитать, зная соленость, температуру и плотность морского льда. Основываясь на знании фазовых соотношений растворов солей, содержащихся в морской воде при низких температурах, (Ассур, 1958) вычислил v для тех значений солености и температуры льда, которые встречаются на земном шаре. В полученных Ассуром результатах не учитывается наличие во льду пузырьков воздуха, однако влияние последних на величину v может быть определено экспериментально сравнением плотности образца морского льда с плотностью пресноводного льда при той же температуре. (Паундер, 1967)

Рис. 7 Миграция рассола в направлении температурного градиента (Паундер, 1967)

gastroguru © 2017